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Abstract Efficient drug discovery programs can be
designed by utilizing existing pools of knowledge from the
already approved drugs. This can be achieved in one way by
repositioning of drugs approved for some indications to
newer indications. Complex of drug to its target gives fun-
damental insight into molecular recognition and a clear
understanding of putative binding site. Five popular docking
protocols, Glide, Gold, FlexX, Cdocker and LigandFit have
been evaluated on a dataset of 199 FDA approved drug-
target complexes for their accuracy in predicting the exper-
imental pose. Performance for all the protocols is assessed at
default settings, with root mean square deviation (RMSD)
between the experimental ligand pose and the docked pose
of less than 2.0 Å as the success criteria in predicting the
pose. Glide (38.7 %) is found to be the most accurate in top
ranked pose and Cdocker (58.8 %) in top RMSD pose.
Ligand flexibility is a major bottleneck in failure of docking
protocols to correctly predict the pose. Resolution of the
crystal structure shows an inverse relationship with the
performance of docking protocol. All the protocols perform
optimally when a balanced type of hydrophilic and hydro-
phobic interaction or dominant hydrophilic interaction
exists. Overall in 16 different target classes, hydrophobic
interactions dominate in the binding site and maximum
success is achieved for all the docking protocols in nuclear
hormone receptor class while performance for the rest of the
classes varied based on individual protocol.
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Introduction

Drugs designed to interact specifically with certain targets
frequently also interact with other proteins, therefore show-
ing several off-target interactions leading to harmful side
effects. These interactions can be explored by the pharma-
ceutical industry to not only derive insight into side effects
but also to discover novel therapeutic applications for old
drugs [1–3]. These off-target interactions are of great inter-
est. Getting FDA approval for a new chemical entity is a
major objective of any drug discovery process. Depending
on the therapeutic area, this process can extend over years
and the current estimate of developing a novel agent is up to
$800 million [4]. Approved drugs have acceptable pharma-
cokinetics, safety profiles and are accepted by regulatory
agencies for human use, and it is important to address
whether it is preferable to use them as a whole or as template
for further design of new molecules. In addition, the com-
plex of the FDA approved drug to its target gives a) valuable
insight into various types of interactions, which may be
potentially responsible to attain its required pharmacological
action, b) a clear understanding of putative binding site of
drug and c) the bioactive conformation of the drug.
Therefore, it is desirable to utilize the existing pool of
knowledge from approved drugs efficiently before direct-
ly developing novel molecules. With the integrative
knowledge from the pharmacokinetic profile, bioactive
conformation of the drug and binding site characteristics
of the target, more potent and promising drug like mol-
ecules can be designed.
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Computational methodologies have emerged as an indis-
pensible tool in any drug discovery program, playing a key
role from hit identification to lead optimization. Amongst
these methodologies, molecular docking is the most com-
monly used method for lead identification and optimization.
Its role can be appreciated by looking at the drugs developed
in part by computer aided structure based drug design meth-
ods, which are in late stages of clinical trials or have reached
market [5–7]. In molecular docking, a theoretically modeled
complex of protein and ligand is employed for understand-
ing the phenomenon of molecular recognition. This under-
standing gives fundamental insights into some of the
important aspects of drug designing like, mechanism of drug
action, subtype selectivity within a target class, which
assists in designing more efficient and target selective mol-
ecules. Molecular docking has also been acknowledged with
significant attention for its role in lead optimization where
the known active structure can be tested in a computer
model before actually proceeding to synthesis [8–12].

With the increase in the use of computational methodol-
ogies in drug discovery, growth in the number of molecular
modeling tools with docking capability is increased. Equal-
ly, publications evaluating docking algorithms based on
their ability to predict correct pose and to score active
molecules preferentially over inactive molecules, have been
increased and thus studies based on enrichment have be-
come very important [13–29]. The success of a protocol in
predicting a ligands’ binding pose is usually measured by
the RMSD between the experimentally observed ligand and
the top ranked solution predicted by the docking protocol.
Kontoyianni et al. [13] carried a study of 69 diverse protein-
ligand complexes with five docking programs, the overall
results ranged from 38 % to 69 % using 2 Å RMSD as a
threshold. Warren et al. [14] showed that results varied from
0% of poses satisfactorily to other combinations where >90%
of poses were within 2 Å RMSD cutoff. Comparison of new
program with other ultimately requires a large and diverse test
set in order to establish that differences between program
success rates are statistically significant. Friesner et al. [15]
in evaluation of Glide program have used 202 protein-ligand
complexes from Protein Data Bank (PDB) which usedmost of
the proteins of well-known Gold and FlexX test sets. In a
number of articles docking programs were evaluated with a
small number of targets (e.g., Jones et al. [16] five complexes,
Bursulaya et al. [17] 37 complexes, Muryashev et al. [18] 19
complexes, Wang et al. [19] 12 complexes). Perola et al. [20]
compared three docking protocols on a dataset of high phar-
maceutical relevance and their dataset consisted of 150
proteins-ligand complexes which were initially selected from
protein data bank and vertex structure collection according to
different criteria. Chen et al. [21] tested four well known
commercially available docking programs ICM, Gold, Glide,
and FlexX on 164 high resolution protein-ligand complexes

with success rate of 83, 79, 55, and 45 percent respectively. Li
et al. [22] conducted extensive evaluation on 195 protein-
ligand complexes using Glide, Gold, LigandFit, and Surflex,
with the former two performing accurately over the latter two
programs. Plewczynski et al. [23] evaluated Surflex, Ligand-
Fit, Glide, Gold, FlexX, eHiTS, and AutoDock, on the exten-
sive dataset composed of 1300 protein–ligand complexes
from PDBbind database, with reported experimental binding
affinity values. The results showed that the ligand binding
conformation could be identified in most cases, but the lack of
universal scoring function for all types of molecules and
protein families is still observed. Several studies also evaluate
scoring efficiency of docking protocols along with evaluating
pose prediction ability [24–29]. There are reviews specially
discussing the pros and cons associated with the evaluation of
docking protocols [30–34]. In order to assess performance of
docking protocols, the diversity of the test set is of primary
importance since performance varies as the target is varied.
There are various test sets available including that of vendor
sets for benchmarking the docking protocols like, Astex-85
[35] having 85 high-quality crystal structures of therapeutical-
ly relevant targets and “drug-like” ligands; GOLD bench-
marking set [36, 37] derived from the most widely used
docking benchmarks; DUD [38] set 38 protein targets for
which sets of annotated actives and corresponding property-
matched decoys are available for each target.

Docking is one of the promising methods when looking
at in silico repositioning of drugs as it gives information
about the possible mode of binding and to a certain extent
the strength of binding [39, 40]. Recently, several studies
have been reported where in the database of FDA approved
marketed drugs were successfully repositioned using struc-
ture based approaches [41–46]. Several databases and serv-
ers have been created to identifying possible targets for
drugs to be considered for repositioning and to predict drugs
polypharmacology for identification of possible side effects
[47–50]. Since the performance of docking protocols is
highly dependent on the target and the ligand, it becomes
mandatory to benchmark the docking protocols for their
ability to predict experimental pose on focused dataset of
drugs and their targets, before employing docking and scor-
ing for repositioning, virtual screening and lead optimiza-
tion. Our group’s research is focused on practicing different
structure-based and analogue-based approaches to design
novel molecules with varied application [51–62]. There are
several studies carried out in our group using Glide, Gold,
Cdocker, LigandFit and FlexX, either singly or in combina-
tion and it was observed that the performance varied with
the targets [54–60]. These protocols works on an indepen-
dent principle to produce a ligand docked into the protein,
hence comparing the performance on a large and diverse
dataset will help us understand the efficiency of these algo-
rithms. The evaluation of these protocols is also essential,
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when employing them on larger scale for drug repositioning
and for other lead design methods. In this study, we report
the results of an extensive evaluation of five popular dock-
ing protocols, Glide, Gold, FlexX, Cdocker and LigandFit
on a dataset comprised of all the FDA approved drugs in
complex to their targets found in PDB. Availability of such
complexes in protein data bank in significant number en-
sured us that our dataset would be one of its kind and highly
relevant to drug discovery. To the best of our knowledge
there is no study yet specifically addressing evaluation of
protocols on dataset of drug target complexes. Hence, we
have been motivated to carry out the evaluation of pose
prediction ability of docking protocols. Present study pro-
vides important information which will help in designing
improvised protocols not only for drug repositioning pur-
pose but also for drug-like compound docking and subse-
quent virtual screening campaign. Performance of docking
protocols is also assessed based on different factors like
ligand flexibility, resolution of crystal structure, target class
and nature of binding site.

Materials and methods

Dataset preparation

The dataset in the study was designed to retain high phar-
maceutical relevance and for this purpose none other than
drugs themselves would be of choice. Therefore, all the
FDA approved drugs present in PDB [63] bound to their
targets are considered. There are about 337 FDA approved
drugs and nutraceuticals found in 6531 crystal structures in
PBD, since focus of the study is on drug-target complexes,
51 nutraceuticals are excluded [64]. From the remaining 286
drugs, 187 are bound to proteins which are not specified as
its target in DrugBank [65] and hence they are excluded.
Therefore a total of 97 drugs finally remain after removing

two molecules viz. DMSO and guanidine, which are not
actually drugs. These 97 drugs are present in complex with
207 crystal structures in PDB of which three solution NMR,
one theoretical model and four obsolete structures are re-
moved thereby retaining 199 crystal structures in the data-
set. The scheme for dataset construction is shown in Fig. 1.
We have considered drug-target complex as a different entry
if it had different resolution and different source of organism
although same target. This was useful in studying the effect
of resolution of proteins on the performance of docking
protocol though target structure is the same in all other
aspects. The distribution of dataset proteins in various res-
olution ranges in comparison to overall distribution of struc-
tures in PDB is shown in Table 1.

Protein preparation

Coordinates for each structure were taken from the RCSB
protein data bank and were prepared using the protein
preparation wizard incorporated in the Schrodinger software
package. Bond orders and formal charges were added for
hetero groups and hydrogens were added to all atoms in the
system. To optimize the hydrogen bond network, His tau-
tomers and ionization states were predicted, flip of side
chains of Asn, Gln, and His residues were assigned and
hydroxyl and thiol hydrogens were sampled. Water mol-
ecules in all structures were removed. For structures
with missing side chain atoms in the active site, the
refinement module in Prime was used to correct struc-
ture and predict their conformations. For each structure,
a brief relaxation was performed using an all atom-
constrained minimization carried out with the impact
refinement module (Impref) using OPLS 2001 force
field to alleviate steric clashes that may exist in the
original PDB structures. The minimization terminates when
the energy converged or RMSD reaches the maximum
cutoff of 0.3 Å.

1492 FDA 
approved products

337 in 6531 
PDB structures

286 Drugs

99 drugs bound 
to their target

51 nutraceuticals

186 drugs bound 
to non-target

97 drugs have 207 
PDB structures

DMSO and 
Guanidine

199 drug-target 
complexes

3 NMR, 1 theoretical 
model and 4 obsolete 

complex

Protein 
preparation

Ligand
preparation

Docking 

Glide Gold FlexX Cdocker LigandFit

Analysis

Fig. 1 Overall methodology
followed in the study along
with the criteria to reach final
number of drug-target com-
plexes. Blocks in the leftmost
corner shown by thick arrow,
are the ones that were excluded
from dataset
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Ligand preparation

Co-crystallized drug molecule was extracted from the pro-
tein after assigning correct bond order, ionization state and
heteroaromatic state. Ligands were extracted from the pro-
tein prior to protein preparation and prepared by Ligprep
wizard of Schrodinger Inc. Ionization state of ligand was
retained without generating tautomers and stereochemistry
was determined from 3D structure. Randomization of the
starting geometry and the position of the ligands is impor-
tant and it has been seen that the use of experimentally
observed ligand geometries as a starting point has led to
increased success rate, an observation rationalized as
indicating a lack of coverage of conformational space
in docking protocol’s internal conformer generator.

Docking protocols

Docking in all the protocols was performed at default set-
tings and without any prior optimization of its protocols
except definition of the binding site, so that we can compare
how well these protocols perform with vendor optimized
default settings on dataset of our interest. Twenty poses
were saved for each docking. The comparison of result
was done by estimating the RMSD of the ligand heavy
atoms between the docked pose and the reference (un-
optimized) coordinates from a crystal structure of the
complex, using the superposition tool incorporated in
maestro. The cumulative fraction employed for analyzing
distribution of docked pose in various RMSD ranges,
was calculated by counting the number of poses within
all the RMSD ranges then taking the cumulative sum
followed by fractionating the sum from the total of 199
complexes.

Glide 4.5 [15, 66]

It is grid-based ligand docking with energetic, an algorithm
that approximates a systematic search of positions, orienta-
tions, and conformations of ligands in the receptor-binding
site using a series of hierarchical filters. Flexible ligand

docking was performed with standard precision mode and
refined poses were scored using GlideScore function [67].
The choice of best pose is made by using Emodel energy
score that combines energy grid score, Glide score and
internal strain of the ligand, which is better at predicting
correct pose than docking score [15]. Default settings were
used for both the grid generation and docking. This included
scaling of ligand van der Waal radii by 0.8 Å to partially
account the suboptimal fits that could be accommodated by
minor receptor movements.

Gold 3.2 [16, 68]

Genetic optimization for ligand docking utilizes a genetic
algorithm (GA) which mimics the process of evolution by
representing ligand descriptors on a chromosome. Default
GA settings having population size of 100, selection pres-
sure 1.1, number of operations 100000, niche size 2 and
number of island 5 were used for all calculations.

Cdocker 2.1 [69]

It is molecular dynamics (MD) simulated-annealing based
algorithm. MD simulated annealing process is performed
using rigid protein and flexible ligands. The final minimi-
zation of the ligand poses was performed using full poten-
tial. The final ranking of the docked poses are based upon
total docking energy, including the intramolecular energy
for ligand and the ligand-protein interactions. Heating steps
of 2000 with target heating temperature of 700ºC and cool-
ing target temperature of 300º in 5000 steps were used for
simulated annealing.

LigandFit 2.1 [70]

It employs a shape comparison filter, in combination with a
Monte Carlo conformational search for generating ligand
poses consistent with the active site shape. Candidate poses
were minimized in the context of active site using a grid
based method for evaluating protein-ligand interaction
energy. In Monte Carlo conformational search, 15,000 trials
were employed with energy grid using Dreiding force field
and smart minimizer algorithm did the final minimization of
the docked poses.

FlexX 3.14 [71, 72]

It is a fast flexible docking method that uses an incremental
construction algorithm to place the ligand into active site.
The base fragment is automatically selected and is placed
into the active site using a pattern recognition algorithm
called pose clustering. The remainder of the ligand is built
up incrementally from other fragments. Placement of ligand

Table 1 Distribution of dataset proteins in different resolution ranges

Sr.
no.

Range
(Å)

# of PDB in
in dataset

# of PDB protein
data bank

1 0.50 – 1.00 1 396

2 1.01-1.50 11 4896

3 1.51 – 2.00 60 22878

4 2.01 – 2.50 74 18001

5 2.51 – 3.00 45 8918

6 3.01 – 3.50 8 2541
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is scored based on protein ligand interaction. Finally, the
binding energy is estimated and placements are ranked.
Ligands were docked starting with a base fragment and the
best solution is selected according to ChemScore, which
takes into account aromatic, hydrogen bonding, ionic, lipo-
philic interactions, and entropy.

Binding site

In Glide active site was defined by 1000 Å3 box centered on
center of mass of native ligand to confine the center of mass
of docked ligand; in Gold as all the protein atoms within
5.0 Å of native ligand; in FlexX as residues falling within
5.0 Å radius from the cognate ligand coordinates; in
Cdocker as sphere of 10.0 Å radius around native ligand.
LigandFit defines binding site based on site finding algo-
rithm, all free grid points (i.e., grid points not occupied by
the protein) that lie within the radius of any ligand atoms are
determined. The radius of ligand heavy atom is set at 2.5 Å
while for the ligand hydrogens the radius is set to 2.0 Å.
Thus, site definition is a collection of all grid points occu-
pied by the ligand and un-occupied by the protein.

Results and discussion

Of the numerous poses generated during a docking run, the
top 20 are saved, among them the top energy pose (hereafter
referred as TE) and top RMSD (hereafter referred as TR)
pose are used for analysis, for all the docking protocols. Top
energy (TE) pose is the pose with lowest energy, i.e., ranked
number one (# 1) by the corresponding scoring function and
top RMSD (TR) pose is the pose with lowest RMSD i.e.,
closest to the experimental pose. The best value obtained
from Emodel energy, Gold score Fitness, Cdocker energy
and Dockscore of Glide, Gold, Cdocker and LigandFit
respectively are considered for TE analysis. General perfor-
mance of all the docking protocols is assessed by comparing
the docked pose with the experimental pose. Docking is
considered accurate if the RMSD between docked pose

and the experimental ligand pose is less than or equal to
2.0 Å.

Among TE and TR, number and percentage of com-
plexes qualifying the arbitrary accuracy criteria of 2.0 Å
and stringent success criteria of 1 Å is shown in Table 2. At
2.0 Å cutoff, performance of Glide and Cdocker is found to
be equivalent in TE pose 38.7 % and 34.7 % and TR pose
53.3 % and 58.8 % respectively. While at stringent RMSD
cutoff of 1.0 Å, Glide performs comparatively (22.1 %)
better than other docking protocols. Cdocker produced low-
est average RMSD of 3.93 followed by almost similar
results for Glide, LigandFit and Gold, 4.21, 4.32 and 4.33
respectively while FlexX with highest avg. RMSD of 4.93,
among the top ranked poses. Figure 2 shows, cumulative
fraction of TE and TR pose representing the distribution of
docked poses at various RMSD cutoffs (see methods section
for method of calculating cumulative fraction). The thin
lines represent the TR pose while the thick ones represent
TE pose. The magnitude of difference between the respec-
tive lines of TE and TR pose for a particular protocol
indicates the inefficiency of scoring function to rank the
sampled poses. Highest magnitude of difference (Table 2)
is observed for Cdocker (48) and least difference is observed
for Glide (28). FlexX performance is poor throughout, indi-
cating inefficiency of both the search strategy to sample the
correct conformation and the scoring function to rank the
sampled poses. There are 36 complexes where metal-drug
coordination is found and for the majority of them, docking
protocols are unable to produce correct binding pose. This
poor performance of protocols indicates the need to include
specific parameters to acknowledge metal ligand interaction
in the scoring function.

Ideally, the TE pose and TR pose should be the same but
it is not true, as in the case of Glide only 40 instances where
TE and TR pose are the same and are in success, followed
by 33 instances in LigandFit, as compared to fewer cases
with other protocols are observed. Top ranked (TE) pose
is one that is filtered from the compound library during
docking-based virtual screening funnel and therefore is
of prime importance over TR pose when looking at

Table 2 General performance
of docking protocols with the
number (#) and the percentage
(%) of complexes within the
success criteria at 1.0 Å and
2.0 Å for top ranked pose (TE)
and top RMSD (TR) pose

Docking protocol Top ranked pose (TE) Top RMSD pose (TR) Average RMSD

# % # %

1 Å 2 Å 1 Å 2 Å 1 Å 2 Å 1 Å 2 Å TE TR

Glide 44 77 22.1 38.7 68 105 34.2 52.8 4.21 2.74

Gold 20 53 10.1 26.6 37 89 18.6 44.7 4.33 2.96

FlexX 15 44 7.5 22.1 28 77 14.3 38.7 4.92 3.65

Cdocker 25 69 12.6 34.7 40 117 20.1 58.8 3.63 2.34

LigandFit 31 60 15.6 30.1 47 98 23.6 49.2 4.32 2.82
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performance of docking protocols. The performance of
docking protocols is analyzed as functions of various
subsets like resolution of the proteins, ligand flexibility,
different target class in dataset and nature of interaction
in binding site, and they are discussed in the following
sections.

Ligand flexibility

Inadequacy to sample the conformational space of ligand is
a well-known problem in docking, which increases with
increase in ligand flexibility. The thoroughness of sampling
is partially sacrificed by the docking method to maintain
reasonable computation time. However, low ligand flexibil-
ity can also be difficult to handle although not much con-
formation sampling ligand is required but precise
positioning of ligand in cavity is required. In order to study
the effect of ligand flexibility on accuracy of docking pro-
tocols, we have classified the docking results based on
number of rotatable bonds of co-crystals, into complexes
with low (<5), medium (5–9) and high (>9) ligand flexibil-
ity. From Table 3, it is clear that the docking protocols

perform best when ligands have low or medium flexibility.
In low flexibility class LigandFit, Cdocker and Glide per-
form almost equivalently, with LigandFit best among them.
Performance of hierarchical systematic search of Glide is
consistent in producing correct pose in low and medium
flexibility class while for the rest of the protocols success
in medium class varied with significant margin from low
flexibility class. Overall efficiency of conformational search
strategy of all the docking protocols decreased as ligand
flexibility increased, with highest sensitivity for incre-
mental construction of FlexX. Monte Carlo sampling
method of Ligandfit is found to be most efficient in
handling high ligand flexibility, as compared to search
strategy of other protocols.

Resolution of crystal structure

In our dataset, lesser quality structures are purposely
retained, which most of the researchers do not include in
their dataset as it may badly affect the docking results. This
have been done to study the effect of resolution on efficien-
cy of docking protocols in pose prediction. It is worthy to
note that for many proteins in drug discovery projects, the
3D structures are solved at low resolutions (>2.0 Å) due to
difficulties during crystallization procedures. Nonetheless,
they still provide excellent starting point for drug hunting.
For the purpose of analyzing the docking results based on
resolution of crystal structure, the data set complexes are
divided into three class as high (≤2.0; 71), medium (>2.0 -
≤2.50; 75) and low (> 2.50; 53) resolution. From Fig. 3,
performance of protocols in different resolution ranges
among TE and TR indicates an inverse relationship of
resolution with the performance of protocols, since the trend
of accurate results for high resolution structure is not ob-
served. Although LigandFit is found to be sensitive to
resolution as it followed the trend, producing correct results
for higher resolution structures. For Glide, Gold, FlexX and
Cdocker the order of accuracy is reversed with resolution,
medium or low resolution complexes are in success more
than high resolution complexes. One possibility could be the
complexity of ligands which to a certain extent is reflected
from average number of rotatable bonds in each class. For

Fig. 2 Cumulative fraction of docked poses for docking protocols at
various RMSD cutoffs, when top ranked [in bold line (TE)] pose and
top RMSD [in dotted line (TR)] pose are considered

Table 3 Percentage of accu-
rately docked drugs, classified
based on ligand complexity in
terms of number of rotatable
bonds and nature of interaction
between drug-target

Docking protocol Ligand complexity Binding site

Low Medium High Hydrophobic Medium Hydrophilic

Glide 46 42 19 44.0 62.5 57.5

Gold 41 22 14 33.5 57.0 47.5

FlexX 35 19 7 24.5 53.0 46.5

Cdocker 49 27 21 55.0 57.0 62.5

LigandFit 48 17 28 37.5 50.0 52.5
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high it is 9.4, for medium it is 8.4 and for low it is 7.4
although the number of complexes in each class varies.
Overall structural variations due to resolution of the protein
structures in the given resolution range (0.50-3.50 Å) are not
very significant in lowering the accuracy of docking proto-
cols on our dataset which contradicts the earlier reported
results [30].

Different target classes

For 97 drugs (199 crystal structures) in the dataset, a total of
85 unique targets (39 redundant) exist. To assess the perfor-
mance of docking protocols on different target families,
grouping of these 85 targets is done based on their biolog-
ical functions. A group of target family is created if more
than two crystal structures are available for that particular
target in the dataset. This grouping criteria reduced the
dataset complexes to 130 which are then grouped into 16
different target classes and the remaining complexes are
included in the miscellaneous class. Targets with different
isoforms are included in the same class like in the case of
carbonic anhydrase where CA-1, CA-2, CA-14, CA-13 are
present and phospholipase A2 where PLA2 isoform2 are
present. All the grouped target classes along with the
drugs bound, number and PDBID of crystal structure
are presented in Table 4.

The distribution of number of rotatable bonds (RB),
hydrogen bond donor (HBD), hydrogen bond acceptor
(HBA) of drugs (in column bar) and hydrophilic and hydro-
phobic interactions between drug-target (in stack bar), for
the dataset complexes classified into different target classes
are presented in Fig. 4. The column bar properties are
computed using QikProp module of Schrodinger package,
while the stack bar properties are obtained by calculating the

proportion of different types of interactions viz. hydrogen
bonding, metal interaction and hydrophobic interaction, in
the binding site. Each stack column represents interaction
involved in a drug-target complex. The X-axis, for column
bars shows drug id while, that for stack bar shows the
corresponding PDBIDs for each drug-target complex. In
graph, D, E, F, G and H the PDBIDs are grouped into
different boxes representing a target class and each sub-
box in a box represents a particular drug. While, in
graph A, B and C each box represents a particular drug.
From Fig. 4, it is found that in the majority of com-
plexes hydrophobic type of interaction is dominate while
there are only four classes where hydrophilic interactions
are dominate.

Among the four target classes viz. carbonic anhydrase
(Zn), farnesyl pyrophosphate synthase (Zn), hydroxylase
(Fe), three of them have metal drug co-ordination type of
interaction. Analysis of results revealed that Cdocker gave
maximum success in TE pose in CA and FS class. For
hydroxylase class all the protocols perform equivalently
for the same two complexes (1PBC, 1PBF) and the remain-
ing three complexes (3PAH, 4PAH, 6PAH) out of five
which are in failure are phenylalanine hydroxylase contain-
ing iron in the active site. Table 5 gives the details about the
number of accurately docked complexes in all the protocols,
among TE and TR. Best performance by all the protocols
except Gold is observed for nuclear hormone receptor class.
In HMG CoA reductase class Glide and Gold perform better.
Cdocker and LigandFit outperform all the other protocols in
HIV protease class by reproducing correct pose five out of six
times. For the complexes of phospholiapseA2 (PL), none of
the protocols are able to sample the experimental pose. We
analyze the results obtained for PLA2 class; drugs involved
are (Table 4) aspirin, atropine, amino salicylic acid and niflu-
mic acid involved in the class with rotatable bonds 3, 8, 4 and
4 respectively and corresponding six crystal structures with
resolution <2.50. These two factors, i.e., resolution and ligand
flexibility are within acceptable range, i.e., protocol should
result in success, therefore, failure in producing correct pose
remains unclear. Active site analysis is done for PLA2 class
and it is found that active site cavity is shallow and dominated
by hydrophobic residues. For Glide and Gold, the docked
pose is obtained in such a way that the major part of the ligand
is buried in the cavity as compared to the experimental ligand
pose that partially covers the cavity. For atropine with two
crystal structures in the study, only single geometry was
used for docking, but for analysis of failure due to insuf-
ficient sampling of ligands conformational space all the
possible conformers of atropine are generated and used for
docking. For both the complexes, correct docked pose is
obtained after conformation generation, indicating lack of
ability of protocols to cover the conformational space of
ligand.

Fig. 3 Percentage accuracy of docking as a function of resolution of
crystal structure of protein at 2.0 Ǻ RMSD cutoff among top ranked
pose (normal lines) and top RMSD pose (dotted lines)
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Type of interaction in binding site

In order to divide the dataset based on type of interaction,
degree of hydrogen bonding (DHB) for each complex is
calculated. DHB is ratio of number of hydrogen bonds
between protein and ligand to the number of heavy atoms
in ligand [20]. DHB indicates whether the interaction be-
tween drug and its target is hydrogen bond driven or hydro-
phobic driven. It is an indirect measure of nature of binding
site, since hydrophilic binding site favors more hydrogen
bonding and there by a high degree of hydrogen bonding
while hydrophobic binding site favors the hydrophobic
interactions. Table 3 shows the distribution of success based
on the interaction driven criteria between drug and its target.
Complexes with degree of hydrogen bonding, 0.1 or less are
classified as hydrophobic driven, i.e., low DHB and ones
with 0.2 or more are hydrogen bond driven, including
ligand-metal interaction, i.e., high DHB while the remaining
complexes have medium DHB. Performance of docking

protocols remains almost similar for binding site with balance
of hydrophilic and hydrophobic interaction (see Table 3).
There is a decrease in performance of all the docking proto-
cols as hydrophobicity of the binding site increases, with
highest sensitivity in the case of FlexX. The variation in
performance of Cdocker is less, indicating its independent
performance on all types of binding site.

Analyzing pose prediction failures

Of the 199 crystal structures, for 76 complexes correct pose
are not predicted by any of the docking protocols employed,
while for 40 of them the correct conformation is not even
sampled. Here we analyze the possible reasons of the failure
in prediction of correct binding pose for these 40 complexes.
As ligand flexibility is found to be one of the significant
factor in affecting the performance (i.e., number of rotatable
bonds >10), these 40 complexes are analyzed for this factor
and 18 of them come under this category. For the remaining

Table 4 Target class name with the drug/drugs involved with number of crystal structure for that particular drug in the dataset in brackets and their
respective PDBIDs

Sr.
no.

Class Drugs involved PDBID

1 Carbonic anhydrase
(CA)

Acetazolamide (1); Topiramate (2) 3 dc3, 1rj6, 1jdo, 1azm, 1ydb, 2h4n, 1zsb,
1ydd, 3hku

2 Phospholipase A2
(PA)

Aspirin (1); Atropine (2); Aminosalicylic acid (3);
Niflumic acid (4)

1oxr, 1tgm, 1th6, 2arm, 1sxk, 1td7

3 HMG CoA reductase
(HR)

Atrovastatin (1); Fluvastatin (2);
Simvastatin (4); Rosuvastatin (3)

1hwk, 1hwi, 1hw9, 1hwl

4 Betalactamase (BL) Cefalotin (1); Cefoxitin (2); Cloxacillin (3) 1kvl, 1ymx, 1i2w, 1fcm

5 Nuclear hormone
receptor (NH)

Dexamethasone (2); Diethylstilbesterol (3); Mefepristone (4);
Norethindrone (5); Norgestrel (6); Progesterone (7);
Raloxifene (8); Spironolactone (9); Conjugated estrogen (1);
Rosiglitazone (10)

1p93, 1m2z, 1s9p, 3erd, 2w8y, 1a52,
1qku, 1qkt, 1gwr, 1 g50, 1nhz, 1sqn,
3d90, 1a28, 1err, 2qxs, 2jfa, 2ab2, 2oax,
1 fm6, 3cs8, 3dzy, 1zgy, 2prg

6 Kinase (KN) Erlotinib (1); Ganciclovir (2); Gefitinib (3); Imatinib (4);
Sorafenib (7); Sunitinib (8); Amiloride (5); Dasatinib (6)

1 m17, 1ki2, 2ito, 2ity, 2itz, 1 t46, 2hyy,
1uwh,1uwj, 3g0e, 3gof, 1f5l, 2gqg

7 Phosphodiestrase 5A
(PD)

Sildenafil(1); Tadalafil(2); Vardenafil (3) 3jwq, 2 h42, 1udt, 1tbf, 1udu, 1x0z, 1xp0,
1uho, 3b2r

8 Farnesyl
pyrophosphate
synthase (FS)

Alendronate (1); Ibandronate (2); Pamidronate (3);
Zoledronate (4)

2f92, 1yhm, 2f94, 2f89, 1zw5, 2f8z,
2f8c, 2f9k

9 Transthyretin (TT) Diethylstilbesterol (1); Diflunisal (2); Levothyroxine (3) 1tt6, 1tz8, 3d2t, 2rox, 1eta, 1etb, 1ie4,
1sn0, 1ict

10 Plasma protein (PP) Diclofenac (1); Diflunisal (2); Ibuprofen (3); Iodipamide (4);
Levothyroxine (5); Propofol (6); Salicylic acid (7)

3cfq, 2bxe, 2bxg, 2bxn, 1hk1, 1hk2, 1hk3,
1hk4, 1hk5, 1e7a, 2i2z, 2i30, 3b9m

11 Acetyltransferase (AT) Chloramphenicol (1); Fusidic acid (2); Isonazide (3);
Carnitine (4)

3cla, 4cla, 2xat, 1cla, 1qca, 1w6f, 1s5o

12 HIV protease (HP) Darunavir (1); Lopinavir (2) 2hs1, 2idw, 2hs2, 2ien, 2ieo, 1rv7

13 Alpha thrombin (TR) Proflavin (1); Suramin (2) 3bf6, 2h9t, 1bcu

14 Thymidylate
synthase (TS)

Raltitrexed (1); Pamitrexed (2); Pyrimethamine (3) 1hvy, 1i0o, 1ju6, 1juj, 1j3j

15 Hydroxylase (HY) Epinephrine (1); Levodopa (2); Norepinephrine (3);
Aminosalicylic0 acid (4)

3pah, 6pah, 4pah, 1pbc, 1pbf

16 Dehydrogenase (DG) Flurouracil (1); Mannitol (2); Mycophenolic acid (3);
Ursedeoxycholic acid(4)

1h7x, 1m2w, 1me7, 1meh, 1mei, 1jr1, 1ihi
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Table 5 Effect of different target class on performance of docking protocols among top rank pose (TE) and top RMSD (TR) pose. Table shows
number of accurately docked complexes at 2.0 Ǻ RMSD cutoff, number of drugs in the class and their corresponding number of crystal structures

Sr. no. Target class # of complexes # of drugs # of PDB

Glide Gold FlexX Cdocker LigandFit

TE TR TE TR TE TR TE TR TE TR

1 Carbonic Anhydrase (CA) 2 7 1 4 1 4 3 6 2 5 2 9

2 Phospholipase A2 (PL) 0 0 0 0 0 0 0 0 0 0 4 6

3 HMG CoA reductase (HR) 3 3 3 3 1 1 2 3 0 2 4 4

4 Betalactamase (BL) 1 2 1 1 0 2 0 2 1 3 3 4

5 Nuclear hormone receptor (NH) 18 22 16 23 10 15 17 21 18 19 9 24

6 Kinase (KN) 8 8 4 4 3 5 6 10 2 5 8 13

7 Phosphodiestrase 5A (PD) 2 3 2 6 0 1 5 8 1 4 3 9

8 Farnesylpyrophosphate synthase (FS) 0 0 1 3 1 2 3 6 0 0 4 8

9 Transthyretin (TT) 4 6 0 2 1 2 1 3 1 2 3 9

10 Plasma protein (PP) 4 8 1 6 1 1 3 6 2 3 7 13

11 Acetyltransferase (AT) 0 1 0 2 1 2 0 3 1 2 4 7

12 HIV protease (HP) 0 0 0 1 0 4 5 5 5 5 2 6

13 Alpha thrombin (TR) 0 1 0 0 0 1 1 1 1 1 2 3

14 Thymidylate synthase (TS) 1 2 0 1 1 1 0 1 0 0 3 5

15 Hydroxylase (HY) 2 2 2 2 2 2 2 2 2 2 4 5

16 Dehydrogenase (DG) 2 4 2 4 3 5 2 5 0 6 4 7

17 Miscellaneous 31 38 20 27 19 29 21 37 25 40 38 67

Fig. 4 Distribution of number of rotatable bonds (RB), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA) of drugs (in column bar) and
hydrophilic (blue) and hydrophobic (orange) interactions between drug-target (in stack bar), for the dataset complexes in grouped target classes
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complexes ligand flexibility does not seem to be the issue.
The majority of the remaining complexes have their co-
crystals partially buried in protein or the active site is shal-
low and solvent exposed. For predicting correct pose for a
complex with small ligands, docking protocols are required
to place the ligand correctly more than sampling the con-
formation. For a partially buried ligand docking algorithms
have more options to place ligand than for a completely
buried ligand and therefore this becomes one of the reasons
for failure in pose prediction. In a couple of complexes
(2ARM, 1TH6) the co-crystal is conformationally strained
as compared to docked ligand and hence becomes one of the
reasons for failure. In a couple of complexes (1TBF, 2ITO)
the ligand is bigger in size of which the core fragment of
ligand is placed correctly by protocols, but presence of
flexible side chain leads to overall failure (see Fig. 5). In
one particular example (1P7R) heme is present in active site
and the co-crystallized ligand did not show any interaction
with heme iron which is very common for any heme protein,
but TE pose from all the docking protocols show the
presence of electrostatic interaction between iron of heme
and nitrogen atom of ligand (see Fig. 6). Kellenberger et al.
[27] reported similar types of observations for the failure in
pose prediction.

Conclusions

FDA approved drugs form a potential starting point for
structure-based drug design campaign. 3D structures of
these drugs in complex to their targets will provide funda-
mental insights into phenomenon of molecular recognition.
The goal of the present study is to evaluate Glide, Gold,
FlexX, Cdocker and LigandFit for their ability to accurately
predict the experimental pose on a dataset of FDA approved
drug target complexes (97 drugs with 199 corresponding
crystal structures). Also, to characterize docking outcomes
for the test set as a whole and subsets based on resolution of

proteins, ligand flexibility, nature of interaction between
target and drug and target family. Performance of all the
protocols are compared at vendor optimized default settings,
providing optimal protocol for a particular target. Glide
appeared to perform best (37.8 %) in pose prediction as
compared to other protocols, but pose sampling efficiency
of Cdocker (58.8 %) is higher than that of Glide (53.7 %).
LigandFit, Cdocker and Glide perform well at low ligand
flexibility; Glide performs equivalently with both low and
medium ligand flexibility, while highly flexible ligands are
sampled well with Monte Carlo simulation of LigandFit. It
is also found that number of rotatable bonds and different
target class affects accuracy of docking protocol very sig-
nificantly while effect of resolution range is not very signif-
icant. Performance of all the docking protocols decreases as
the binding of ligand to its target is dominated by hydro-
phobic interactions except Cdocker which is found to be
independent of it. During analysis of binding site interaction
in different target classes, it was found that hydrophobic
interactions are the dominating forces governing the binding
of ligand. In terms of performance of protocols on different

Fig. 6 Co-crystallized ligand along with docked pose from different
docking protocols for 1P7R complex

2ITO1TBF

Fig. 5 Docked poses (shown in
lines) from different docking
protocols superimposed on
experimental conformation
(shown in ball and sticks)
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targets class, all the protocols perform well on nuclear
hormone receptor class with the rest of the classes perfor-
mance varied based on individual protocol. A lot more effort
is needed for understanding complex phenomenon of drug-
target interaction and improving the way in which docking
protocols can explain it to a better extent, though in the
present scenario with our findings we propose that Glide is
the most efficient protocol in predicting experimental pose
of a drug bound to its target.
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